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Abstract
In this paper, we present a method for Hamiltonian simulation in the context of
eigenvalue estimation problems, which improves earlier results dealing with Hamil-
tonian simulation through the truncated Taylor series. In particular, we present a
fixed-quantum circuit design for the simulation of the Hamiltonian dynamics, H(t),
through the truncated Taylor series method described by Berry et al. (Phys Rev Lett
114:090502, 2015). The circuit is general and can be used to simulate any givenmatrix
in the phase estimation algorithm by only changing the angle values of the quantum
gates implementing the time variable t in the series. The circuit complexity depends
on the number of summation terms composing the Hamiltonian and requires O(Ln)

number of quantum gates for the simulation of a molecular Hamiltonian. Here, n is
the number of states of a spin orbital, and L is the number of terms in the molecu-
lar Hamiltonian and generally is bounded by O(n4). We also discuss how to use the
circuit in adaptive processes and eigenvalue-related problems along with a slightly
modified version of the iterative phase estimation algorithm. In addition, a simple
divide-and-conquer method is presented for mapping a matrix which are not given
as sums of unitary matrices into the circuit. The complexity of the circuit is directly
related to the structure of the matrix and can be bounded by O(poly(n)) for a matrix
with poly(n)-sparsity.
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1 Introduction

Quantum phase estimation [1] is a computationally powerful algorithm used in the
study of various eigenvalue problems. It is the key component of quantum chemistry
simulations [2–5] and many other quantum algorithms (see the recent review article
[6] or the book [7]) such as the Shor’s integer factorization [8] and HHL algorithm
for the solution of linear systems [9]. Given a unitary matrix U with an approximate
eigenvector |ϕ〉, since any eigenvalue of a unitary matrix is in the form of a complex
exponential ei2πφ for 0 ≤ φ < 1, the algorithm particularly estimates the value of φ.
In quantum simulations, since U is the time evolution operator of a Hamiltonian H
representing the dynamic of a quantum system, i.e., U = eiHt , the estimated value
also yields an eigenvalue ofH. Therefore, the algorithm is used to find the eigenvalues
(generally the lowest corresponding to the ground state energy) of H.

SimulatingH of a quantum system through the phase estimation algorithm neces-
sitates an explicit circuit design of eiHt in terms of quantum gates. For a given
H = ∑L−1

l=0 Hl , the generalized Trotter formula [10,11] is a common way to esti-
mate eiHt as a product of evolution operators eiHl t which can be mapped to quantum
gates. The resulting product accurately yields the evolution if all terms in the formula
commute with each other. Otherwise, it involves an error which depends on the order
of the approximation. The amount of the error and the computational complexity (the
required number of quantum gates) also increase proportionally with the number of
terms L , ||Ht ||, and the simulation accuracy [12].

In quantum computing, the complexity of implementing a circuit for the Hamilto-
nian can be decreased by using additional subspaces. Berry et al. [13] have proposed
using the Taylor expansion of eiHt directly on quantum circuits by adding an ancil-
lary register to the system. In Ref. [14], for a HermitianH we have showed that when√
I − H2 is available, one can use the following unitarymatrix in the phase estimation

algorithm:

(H −√
I − H2√

I − H2 H
)

. (1)

This notion of using an extended system to simulate a smaller one is generalized as
quantum signal processing [15], where a unitary matrix similar to Eq. (1) used without
the phase estimation algorithm. Recently, the overhead of the truncated Taylor series
method is reduced by changing the computational basis to attain the square root of
a matrix efficiently [16]. In Ref. [17], successive applications of (I + iH/μ) with
μ ≥ 10||H|| are used to obtain the eigenvalue ofH from the sine value of the phase in
the phase estimation algorithm. Here, note that these approaches have assumed that the
Hamiltonian is given as a sum of simple unitary matrices. In Ref. [18], the truncated
Taylor series method is also used for quantum simulations after decomposing the
configuration interaction matrix into a sum of sparse matrices.

The main contribution of this paper is as follows:

• Given a Hamiltonian H, we consider U (t) =
(
tH + i

√
I − t2H2

)
and approxi-

mate the expression involving the square root by
(
I − t2H2/2

)
to obtain a circuit
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simulating the Hamiltonian dynamics with reduced complexity. Using the circuit
in the phase estimation algorithm, the eigenvalue of H can be obtained from the
cosine value of the phase. The presented circuit has a fixed design and can be used
in adaptive processes along with a modified iterative phase estimation algorithm.

• We also describe a divide-and-conquer method that can be used to write a general
matrix as a sum of unitary matrices. The method groups matrix elements into
submatrices and directly maps them to the quantum gates. Because of this direct
mapping, the number of quantum gates is related to the number of nonzero matrix
elements and can be reduced in the case of structured sparse matrices.

The remaining part of this paper is organized as follows: In the following subsec-
tion, we summarize the truncated Taylor series method. In Sect. 2, we first describe
the Taylor expansion used in this paper, then present a general circuit design for the
described expansion, analyze its complexity, explain how to use it in the phase estima-
tion algorithm, and discuss the molecular Hamiltonians and the Hamiltonian for the
hydrogen molecule as example system. In Sect. 3, we explain the divide-and-conquer
method and analyze the complexity in terms of the required number of CNOTs. In
Sect. 4, we discuss how the method can be used with structured matrices and use
the Hamiltonian of the hydrogen molecule in particular. We also discuss adaptive
processes and describe a modification to the iterative phase estimation algorithm. In
Sect. 5, we summarize our results.

1.1 Truncated Taylor series method

For a given matrix Ū , assume that we are able to build the circuit equivalent of the
following unitary matrix by using an ancilla quantum register:

U =
(
Ū •
• •

)

, (2)

where each “•” represents amatrix which has no special meaning and their dimensions
may be different on the diagonal and anti-diagonal of the matrix. When applied to any
arbitrary |ψ〉 on the system register, the above matrix generates the following output
state:

U |0〉 |ψ〉 = |�〉 + |0〉 Ū |ψ〉 . (3)

Here, |0〉 represents the first vector in the standard basis and |�〉 is the part of the
output in which the first register is not in |0〉 state. When the first register is in |0〉
state, the second register holds Ū |ψ〉. Therefore, U can be used to emulate the action
of Ū on any arbitrary state |ψ〉. This idea is used in various contexts; for example,
in Ref. [19], a programmable circuit design is presented for unitary matrices. Given
a Hamiltonian H = ∑L−1

l=0 αl Hl with Hl representing a unitary matrix; the Taylor
expansion of eiHt truncated at the K th order is defined as:

123



  328 Page 4 of 19 A. Daskin, S. Kais

U (t) = eiHt ≈ Ū (t) =
K∑

k=0

(iHt)k

k! . (4)

As in Ref. [13], we obtain:

Ū (t) =
K∑

k=0

L−1∑

l1,...lk=0

(i t)k

k! αl1 . . . αlk Hl1 . . . Hlk =
M−1∑

j=0

β j V j , (5)

Here, the β j and the Vj are products of αls and Hls, respectively, and MO(LK ) is the
number of the resulting terms. The above expansion can be implemented as a circuit
by using the following [13]:

U = (
B∗ ⊗ I

)
V (B ⊗ I ) =

(
Ū •
• •

)

. (6)

where V = blkdiag (V0, V1, . . . , VM ) and B |0〉 = 1√
s

∑M−1
j=0

√
β j | j〉, where s =

∑M−1
j=0 β j . V can be implemented as a circuit by using an additional ≈ logM control

qubits: When these qubits are in the state |j〉, Vj is applied to the system register.

2 Expansion formula and the circuit

Given a Hamiltonian H ∈ RN with (N = 2n), when ||t H || ≤ 1 (see the footnote1),
as in Ref. [18,20–22]) we define:

U (t) = tH + i
√
I − t2H2. (7)

Here, U (t) describes a unitary matrix [23] with the eigenvalues whose real parts are
equal to those of theHamiltonian. In addition,U (t) and tH have the sameeigenvectors.
Truncating the Taylor expansion of the square root at the second term, we obtain the
following approximation:

Ū (t) = tH + i

(

I − t2H2

2

)

, (8)

which, modulo a multiplication by i = sqrt−1, is the same as the Taylor expansion of
×e−iHt truncated at the third term. The most significant part of this approximation is
that it does not introduce any error on the real part of the eigenvalues ofU (t). Hence,
by mapping Ū (t) to a circuit and using the phase estimation algorithm, one can obtain
the eigenvalue from the cosine value of the phase.

In the following subsection, based on Eq. (6), a circuit design is presented for Ū (t).

1 If H is given as a sum of unitaries, then normalizing the coefficients directly makes ||H || ≤ 1. If it is
given as a matrix, then one can divide the matrix elements by the 1- or infinity-norm of the matrix, which
can be computed in poly(n) time if there are poly(n) number of nonzero matrix elements.
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Fig. 1 Circuit for U (t): In total
(n + log L + 2) qubits are
employed in the circuit

|0
B

• •
B∗

|0
Π

/ UH UH /

V

2.1 Circuit design for Ū
(
t
)

When Ū (t) is close to a unitary matrix, one may consider finding a circuit design
through matrix decomposition techniques such as QR iterations [24] or Householder
transformations [25,26]. However, such a task would require finding the square of the
Hamiltonian and be equivalent to the diagonalization of the Hamiltonian in terms of
the complexity, i.e., O(N 3) for an N -dimensional dense matrix.

In this paper, we will first assume that we know how to obtain the circuit for H in
the following form:

UH =
(H •

• •
)

. (9)

Here, if H is an orthogonal matrix, then UH = H. Otherwise, a “•” represents a
matrix: ifH is a sumof L number of unitarymatrices, thenUH is amatrix of dimension
LN × LN .

In Fig. 1, using UH we draw a circuit which can emulate the action of Ū (t) in the
same way as shown in Eq. (3). The circuit can be considered as the matrix product
U(t) = (B∗ ⊗ I )V (B ⊗ I ), where B is the coefficient matrix and V is the selection
matrix for the terms included in Ū (t):

• In matrix form, the gate B is a 4 × 4 matrix that includes the square root of the
coefficients of the expansion in Eq. (8):

B = 1

|| |b〉 ||

⎛

⎜
⎜
⎝

√
t 1 t/

√
2 0

1 −√
t 0 t/

√
2

t/
√
2 0 −√

t −1
0 −t/

√
2 1 −√

t

⎞

⎟
⎟
⎠ . (10)

Here, 〈b| =
[√

t, 1, t/
√
2, 0

]
. Since this matrix describes a Householder trans-

formation, it can be implemented by using 4 quantum gates [25,26].
• V is the product of two controlledUH and a controlled permutation(	) gates. This
has the following matrix form:
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V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H •
• •

I2N
H2 • • •
• • • •
• • • •
• • • •

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

Because of the zero coefficient in the matrix B, the last part on the diagonal of this
matrix is disregarded. The construction of V is achieved through a permutation
matrix 	 (also used in Ref. [17]) which realigns matrix elements to obtainH2 on
the diagonal and is defined as:

	 =
⎛

⎝
IN

X ⊗ ILN−N

IN

⎞

⎠ . (12)

If we apply this to the first controlled gate, then we attain the following product
which leads to V given above:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I2N
I2N

H •
• •

UH

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

UH
I2N

H •
IN

• •
IN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)

2.2 Complexity analysis

Computational complexity of a quantumcircuit is generally determined by the required
number of CNOT gates. Since the coefficient matrix B can be implemented by 4 quan-
tum gates, we will essentially count the number of CNOTs needed for the controlled
UH operations in order to estimate the computational complexity of the circuit U(t)
in Fig. 1 at time t .

As in Ref. [13], let us assume that for a given H = ∑L−1
l=0 αl Hl , we have an

oracle select(H) that applies Hl to the system register when the ancilla register in
|l〉 state. Since 0 ≤ l ≤ L − 1, log L number of qubits is needed in the ancilla.
Using this selection operator along with the operator BH whose leading row and
column are the coefficient vector [α0, . . . , αL−1], we can assume that we have a
mechanism to construct UH given in Eq. (9): UH = (B∗

H ⊗ I⊗n)select(H)(BH ⊗
I⊗n). Since there are two controlled UH gates in the circuit U(t), in total U(t) makes
2L number of queries to select(H). In addition, BH is an operator on logL qubits
and can be implemented by using O(L) number of quantum gates as a Householder
transformation. Therefore, the total complexity for the circuit can be boundedbyO(L).

Reference [13] is concerned with the Hamiltonian simulation with error ε. The evo-
lution, eiHt , is divided into r segments. Then, each segment is approximated through
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the Taylor series truncated at order K . The query complexity is shown to be propor-

tional to LK , where K is set to be O
(

log(r/ε)
log log(r/ε)

)
to obtain the accuracy (ε/r) for each

segment [13,27]. In contrast, in this paper the simulation is performed in the context
of eigenvalue estimation and the error introduced by the truncation of the Taylor series
at the third term does not affect the eigenvalue error in Eqs. (7) and (8). (The next
subsection explains how to use these equations in the phase estimation algorithm.)
Therefore, considering Eq. (8) in combination with Eq. (5) it is immediate to see that
one can set K = 2 to get a computational cost proportional to L2 (as opposed to the
value of K in Ref. [13] that increases with ε−1 ) which can be further reduced to O(L)

as done in this paper.
Note that the query complexity O(L) when L = O(poly(n)) may appear to be

small but when we take into account the implementation cost of the queries the
gate complexity may be much higher as illustrated in Ref. [28] for the simulation
of Electronic Hamiltonians. In order to have a O(poly(n)) total gate cost, in addition
to L = O(poly(n)), the required number of quantum gates for each Hl should be
bounded by O(poly(n)). This is the case when each Hl is a matrix with poly(n)-
sparsity (the number of nonzero elements is bounded by O(poly(n))) [29,30] or an
n−fold tensor product of Pauli matrices.

2.3 Simulating with the phase estimation algorithm

The phase estimation algorithm (PEA) [1] usesU (t)2
j−1

to compute the j th bit of the
eigenvalueU (t). The powers of Ũ (t) in Eq. (8) can be obtained by successively apply-
ing the circuit U(t) along with a projector operator. Since this requires 2 j repetitions
for the 2 j th power of Ũ (t), in the phase estimation algorithm U(t) is applied O(2m)

times to obtain an eigenvalue with m-bit precision. Therefore, if the circuit Ũ (t) is
of O(Lpoly(n)) number of quantum gates, then the eigenvalue can be obtained in
O(2mLpoly(n)) time complexity.

If Ũ (t) is considered as an approximation to eiHt , then the j th bit can be esti-
mated through the multiplication of t by 2 j , i.e., Ũ

(
t2 j

)= i2 j tH−(
I−22 j−1t2H2

)
,

which is an approximation to eiHt2 j
. However, in this case the approximation error

is O((t2 j )3||H3||). In addition, changing the elements of the coefficient vector

〈b|=
[√

t2 j , 1, t2 j/
√
2, 0

]
changes the value of || 〈b| ||2. Since || 〈b| ||2 impacts the

success probability in the output, this may further affect the accuracy of the obtained
eigenvalue. Note thatU (t) in Eq. (7) (or Eq. (8) as an approximation to Eq. (7)) cannot
be used in the phase estimation algorithm by simply changing the elements of 〈b| .
Because if the eigenvalue of U (t) is eiφ , the eigenvalue of U

(
2 j t

)
is not necessarily

ei2
jφ .

2.3.1 Example Hamiltonian

As an example, let us consider the molecular electronic Hamiltonian in the formalism
of the second quantization [31–33]:
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H =
∑

p,q

h p,qa
†
paq + 1

2

∑

p,q,r ,s

h p,q,r ,sh p,q,r ,sa
†
pa

†
qaras, (14)

where a j and a†j are the spinless fermionic creation and annihilation operators that
are used to define the interaction of a fermionic system. In the context of quantum
chemistry, here, j ∈ {0, ..., n − 1} and represents the state of a spin orbital. h p,q and
h p,q,r ,s are one and two electron integrals classically computed through Hartree–Fock
method.

In the occupation number basis, the creation and annihilation operators can be writ-
ten in terms of Pauli matrices (σx , σy , σz) by using the Jordan–Wigner transformation
[34]:

a j → I⊗n− j−1 ⊗ σ+ ⊗ σ
⊗ j
z , and a†j → I⊗n− j−1 ⊗ σ− ⊗ σ

⊗ j
z , (15)

where

σ+ = |1〉 〈0| = σx − iσy

2
, and σ− = |0〉 〈1| = σx + iσy

2
. (16)

Alternative to the occupation number basis, the parity basis and the Bravyi–Kitaev
basis [35] can be used to map this Hamiltonian into the Pauli matrices (see Ref. [33]
for a comparison). As a particular example, we will use the hydrogen molecule in a
minimal basis. The Hamiltonian for the hydrogen molecule is given as a sum of prod-
ucts of Pauli matrices through Bravyi–Kitaev transformation in Eq. (79) of Ref. [33]:

HH2 = − 0.81261I + 0.171201σ z
0 + 0.16862325σ z

1 − 0.2227965σ z
2

+ 0.171201σ z
1σ z

0 + 0.12054625σ z
2σ z

0 + 0.17434925σ z
3σ z

1

+ 0.04532175σ x
2 σ z

1σ x
0 + 0.04532175σ y

2 σ z
1σ

y
0 + 0.165868σ z

2σ z
1σ z

0

+ 0.12054625σ z
3σ z

2σ z
0 − 0.2227965σ z

3σ z
2σ z

1 + 0.04532175σ z
3σ x

2 σ z
1σ x

0

+ 0.04532175σ z
3σ

y
2 σ z

1σ
y
0 + 0.165868σ z

3σ z
2σ z

1σ z
0

(17)

The evolution operator for this Hamiltonian is computed through Trotter–Suzuki
decomposition. In this decomposition, the exponential (and the circuit) for the each
term is computed separately. (Note that an n-fold tensor product of Pauli matrices
requires (2n − 1) CNOT gates.) Then, these circuits are combined to estimate the
whole evolution operator. Commuting terms in this Hamiltonian simplify the result-
ing circuit. Because of these simplifications, Ref. [33] shows that the circuit simulating
the single first-order Trotter time step of this Hamiltonian requires only 44 CNOT and
30 single-qubit gates.

In our case, since an n-fold tensor product of Pauli matrices requires n single gates,
each term can be implemented by using only single gates. Since there are L = 15 terms,
we need at least 4 qubits in the ancilla to control which term to be applied to the system.
This is basically a select(H) operator that applies the single gates in the j th term to the
system qubits when the ancilla is in |j〉 state. Since there are 4 system qubits, this leads
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to a 4 multi-controlled network. Here, note that a network controlled by n qubits can
be implemented by 2n CNOT gates by following the decomposition given in Ref. [24].
Since there are 4 multi-controlled networks, in total select(H) requires 4× 24 CNOT
gates. Another 24 CNOT gate are necessary for the implementation of the coefficients.
Therefore, the circuit UH for the Hamiltonian will require ≈ 80 CNOT gates in total.
Note that this number is a rough estimate; the number of CNOTs may be reduced by
some optimization on the circuit.

Considering the one iteration of the phase estimation along with the circuit U ; since
there are twomore control qubits forUH, the number of CNOTs for eachUH increases
fourfold. For two UHs controlled by two qubits, 2 × 4 × 80 = 640 CNOT gates are
necessary.

In general case, the number of terms in an electronic Hamiltonian is bounded by
O(n4) [33]. Since each term can be implemented in O(n) time, one iteration of the
phase estimation algorithmwould then require O(n5) quantum gates. Therefore, these
Hamiltonians can be simulated in O(poly(n)) time with the truncated Taylor series
described in Eq. (5) or with the general circuit in Fig. 1 described in this paper.

3 Writing anyH as a sum of unitaries

WhenH is given as a sum of unitary matrices or matrices which can be easily mapped
to quantum gates, then one can design the circuit for U (t) by following Eq. (5) where
the summation is converted into a product formula or the standard Trotter–Suzuki
decomposition. This is the case for molecular Hamiltonians given in the second quan-
tization [31,33].

However, ifH is not given as a sum of simple unitaries,2 then the following divide-
and-conquer method can be used to write the Hamiltonian as a sum of unitary matrices
and obtain UH:

i. The matrix is first divided into 2 × 2 submatrices.
ii. Then, each submatrix is written as a sum of quantum gates.
iii. Using a coefficient matrix BH, the Hamiltonian is generated as a part of UH.

The details are given in the following subsections:

3.1 Division into submatrices

First, a given Hamiltonian H ∈ RN with (N = 2n) is divided into four blocks:

H =
(
A0 A1
A2 A3

)

=
(
A0

A3

)

+
(

A1
A2

)

. (18)

2 Simple in the sense that the required number of quantum gates for each unitary is polynomial in the
number of qubits.
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Using the vectors in the standard basis, this can be rewritten as:

H = |0〉 〈0| ⊗ A0 + |1〉 〈1| ⊗ A3

+ (|0〉 〈1| ⊗ A1 + |1〉 〈0| ⊗ A2)

= (|0〉 〈0| ⊗ A0 + |1〉 〈1| ⊗ A3)

+ (|0〉 〈0| ⊗ A1 + |1〉 〈1| ⊗ A2)
(
X ⊗ IN/2

)
,

(19)

where IN/2 describes an N/2-dimensional identity matrix and

X =
(
0 1
1 0

)

. (20)

This division into blocks is recursively continued until each block dimension becomes
2 or circuit representations of the blocks become known. For instance, after the second
recursion step, we have the following (see “second step (k = 2)” and “third step
(k = 3)” sections for the mathematical steps and the third recursion):

H = (|00〉 〈00| ⊗ A00 + |01〉 〈01| ⊗ A03 + |10〉 〈10| ⊗ A30 + |11〉 〈11| ⊗ A33)

+ (|00〉 〈00| ⊗ A01 + |01〉 〈01| ⊗ A02 + |10〉 〈10| ⊗ A31 + |11〉 〈11| ⊗ A32)
(
I ⊗ X ⊗ IN/4

)

+ (|00〉 〈00| ⊗ A10 + |01〉 〈01| ⊗ A13 + |10〉 〈10| ⊗ A20 + |11〉 〈11| ⊗ A23)
(
X ⊗ I ⊗ IN/4

)

+ (|00〉 〈00| ⊗ A11 + |01〉 〈01| ⊗ A12 + |10〉 〈10| ⊗ A21 + |11〉 〈11| ⊗ A22)
(
X ⊗ X ⊗ IN/4

)
.

(21)

In matrix form,

H =

⎛

⎜
⎜
⎝

(
A00 A01
A02 A03

) (
A10 A11
A12 A13

)

(
A20 A21
A22 A23

) (
A30 A31
A32 A33

)

⎞

⎟
⎟
⎠ . (22)

Note that following the subscripts of A[... ]s from left to right one can easily find the
matrix elements of any A[... ].

3.2 Forming Vjs

By generalizing above steps, at the kth recursive step,H can be written more concisely
in the following form:

H =
2k−1∑

j=0

Vj
(
Pj (X , I ) ⊗ IN/2k

)
. (23)
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Here, we construct Vj s using A[... ]s and Pj (X , I ) is a permutation matrix constructed
by using the tensor product of X and identity matrices, i.e.,

Pj (X , I ) =
k−1⊗

i=0

X ji , with j = ( j0 . . . jk−1)2 . (24)

Each Vj describes a multi-controlled network: In matrix form, Vj is a block diagonal
matrix where a group of A[... ]s are tiled on the diagonal.

3.2.1 Assigning A[... ]s to Vjs at the kth step

Let wi represent the i th word in the set {“0…00”, “0…03”, …, “3…33”} which
includes all possible words from the alphabet {0,3} with the length k. Then we can
define V0 as:

V0 =
2k−1∑

i=0

|i〉 〈i | ⊗ Awi , (25)

Here, |i〉 is the i th vector in the standard basis. V0 is obtained from A[... ]s on the
diagonal of the Hamiltonian. Consider the matrix in Eq. (22) as an example, then V0
is the block diagonal matrix with A00, A03, A30, and A33.

Using wi s in V0 and Pj (X , I ), we will determine the subscripts of A[... ]s involved
in any Vj by the following rule:

Rule 1 If there is an X on the qth qubit, the following change is made in the subscripts
of A[... ]s in V0:

• (3 → 2): if the qth letter of the subscript is 3, we make it 2.
• (0 → 1): if it is 0, we make it 1.

You can consider this as an application of a gate that switches 3s into 2s and 0s into
1s or vice versa. Based on this rule, one A[... ] from each row of the Hamiltonian is
included in Vj .

3.3 Generating circuit for UH in Eq. (9)

If A[... ]s are of dimension 2 × 2, then 2k = N/2 and each Vj involves N/2 number
of A[... ]s. Once the involved A[... ]s are determined, they can be mapped to a circuit
by using different control bit schemes for each A[... ]. Therefore, each Vj describes a
multi-controlled network.

The A[... ]s are in general not unitary. We can write a nonunitary A[... ] as a sum of
two unitary matrices. For instance,

A[... ] =
A[... ] + i

√
I − A2[... ]

2
+

A[... ] − i
√
I − A2[... ]

2
(26)
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|0
BH

• • • • • • • • •
B∗

H|0 • • • • • • • • •
X • • • • • • • •

X • • • • • • • •
A00 A03 A30 A33 A01 A02 A31 A32 A10 A13 A20 A23 A11 A12 A21 A22

Fig. 2 Circuit for UH for any 8 × 8 Hamiltonian matrix: It is assumed that there is no coefficient on any
A[... ]. Therefore, BH can be considered as a tensor product of twoHadamard gates. CNOTs at the beginning
of the circuit represent the simplified permutation operations

This will double the number of Vj s. Here note that any unitary single-qubit gate
can be implemented as a product of three quantum gates and a global phase [7]:
eiθ1Rz(θ2)Ry(θ3)Rz(θ4) with θ1, . . . , θ4 ∈ R. Although this increases the overall
number of quantum gates by a factor of 4, it does not impact the number of Vj s.

Then, the circuits for Vj Pj s are combined in the selection matrix V P by using
an ancilla register: V P applies the product Vj Pj when the ancilla is in |j〉 state. The
matrix form of this operation is as follows:

V P =

⎛

⎜
⎜
⎜
⎝

V0
V1P1

. . .

VN/2−1PN/2−1

⎞

⎟
⎟
⎟
⎠

. (27)

Finally, the circuit for UH implementing the Hamiltonian can be defined as the
product

(
B∗
H ⊗ I

)
V P (BH ⊗ I ), where BH forms a state with the square root of the

coefficients: These coefficients are generated by writing nonunitary A[... ]s as a sum
of two unitaries. For instance, in Eq. (26) we have a coefficient 1/2. This becomes a
coefficient to the product

(
Vj Pj (X , I )

)
. BH can be considered as aHouseholder trans-

formation: An L-dimensional Householder matrix requires O(L) number of quantum
gates [25,26]. An example UH for a general 8× 8 Hamiltonian is presented in Fig. 2,
where Pj s are simplified into two CNOT gates.

Here, note that MATLAB source codes for obtaining A[... ], Vj , and Pj matrices
and the circuit can be downloaded from GitHub3.

3.4 Gate and qubit count

3.4.1 Unstructured dense matrices

The complexity of UH is determined by the number of Vj s. We can determine the
number of qubits and CNOTs by counting the number of A[... ]s. In the final step of the
recursive division, if thematrix elements are put into group of four elements, then there
are

(
N 2/4

)
number of A[... ]s. If each A[... ] is written as a sum of two unitary matrices,

then the number of unitary gates becomes
(
N 2/2

)
. As mentioned in the previous

subsection, each unitary single gate can be implemented using a product of three
rotations. Therefore, in total there are three multi-controlled networks with

(
N 2/2

)

3 https://github.com/adaskin/circuitforTaylorseries
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number of gates and (2n − 1) number of control qubits. By following Ref. [24], a
network controlled by (2n − 1) qubits can be decomposed into N 2/2 CNOTs and
N 2/2 single gates. Since we have three networks (assuming we have used three single
gates for each unitary gate), then the total number of CNOTs is 3N 2/2. The total
complexity of a controlled UH is dominated by these networks.

As a result, a controlledUH in Fig. 1 can be implemented by using O(N 2) number
of quantum gates. In this case, since the complexity of B and 	 are negligible in
comparison with the controlledUH, the total complexity of the circuit is also bounded
by O

(
N 2

)
.

3.4.2 Structured matrices

Direct classical methods require O(N 3) computational time (number of floating-point
operations) to compute the eigenvalue of a dense matrix. However, due to discretiza-
tion and linearization techniques, most of the eigenvalue-related problems deal with
structured matrices: that means the description of a matrix depends on less than N 2

parameters [36]. Many classical algorithms benefit from the structure of a matrix
to reduce the computational effort. Moreover, in the study of complex many-body
quantum systems through the random matrix theory, knowing the structure of the
Hamiltonian determines the structure of the random Hamiltonians in the ensemble
used to replace the Hamiltonian [37].

The described divide-and-conquer method groups the neighboring matrix elements
into gates. Any sparsity in the considered matrix may potentially reduce the number
of A[... ]s. However, when the sparsity of the matrix is structured as in tridiagonal,
anti-tridiagonal, and band matrices, the number of terms and so the numbers of qubits
and CNOTs used in the circuit are directly affected. As an example, consider removing
the first half of A[... ]s from the circuit in Fig. 2, then we can also remove one of the
qubits in the ancilla. This will reduce the gate count by half. The divide-and-conquer
method does not necessitate to store nonzero elements since the indices are used to
determine matrix elements of A[... ]s. Therefore, it can be also used to write sparse
matrices in terms of a circuit with A[... ]s. If there are O(poly(n)) number of nonzero
elements, then this is likely to produce a circuit with O(poly(n)) number of A[... ]s.
If any matrix element is accessible in O(poly(n)) time, then the construction of the
circuit can be done in O(poly(n)) time.

3.4.3 Hamiltonian for the hydrogenmolecule

Let us consider the 16× 16 Hamiltonian for the hydrogen molecule given in Eq. (17)
again. In matrix form, this Hamiltonian only has 4 nondiagonal elements located on
the anti-diagonal part of the Hamiltonian. If we write the diagonal part and the anti-
diagonal part as a sum of two unitaries, then the Hamiltonian can be written as sum of
4 number of

(
Vj Pj

)
terms. Since each Vj involves multi-controlled 8 quantum gates,

in total there are 32 quantum gates. Then, UH requires 5 control- and 1 target qubits.
Since an additional control qubit is necessary for U (t), there are two multi-controlled
network, viz. two controlled UHs, with 6 control qubits. The decomposition of these
networks will constitute 128 CNOT gates in total. Here, note that using U (t) in the
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Fig. 3 The kth iteration of the
iterative phase estimation for
adaptive processes: H represents
the Hadamard gate and k ≥ 1

|0 H • Rz(−π/2) H

|ϕ / U2k /

phase estimation introduces an additional control qubit. Then, the required number of
CNOTs for each iteration of the phase estimation algorithm is doubled to ≈ 256.

Here, the hydrogen molecule is given as an example to show how the structured
sparsity may reduce the complexity of the circuit generated through the divide-and-
conquer method. As explained in Sect. 2.3.1, using the Jordan–Wigner [34] or Bravyi–
Kitaev [35] transformations, the molecular Hamiltonians in the second quantization
can be easily mapped to a sum of L unitary matrices. (Each unitary is a product of
Pauli matrices σx , σy, σz, I .)

4 Discussion on adaptive processes

Finding the matrix elements of a Hamiltonian representing the dynamics of a quantum
system is a nontrivial task requiring tedious analytical and numerical computations.
The circuit can be used to experimentally identify the Hamiltonian dynamic of an
unknown large system or estimate the parameters of a quantum channel, where a
known state is sent through an unknown state and the measurement is used to estimate
the parameters associated with the channel [38]. A similar approach is used also in
Ref. [39] to compress molecular Hamiltonians.

Thematrix divided as in Eq. (21) can also be used to represent a layer of a neural net-
work in matrix form. In the learning or adaptive processes based on gradient descent,
when the eigenvalues of an autocorrelation matrix are disparate, i.e., the condition
number of the matrix is large, the learning rate or the performance of an adaptive algo-
rithm is hindered in applications [40]. Therefore, in these processes, using the phase
estimation as an ingredient for different algorithms may provide better performances.
The phase estimation algorithm requires two registers to store the eigenvalue and the
eigenvector, respectively. The size of the first register is determined by the desired
accuracy; for example for a 32-bit precision, it has 32 qubits. When the system size is
large, the iterative phase estimation [1] using only a qubit in the first register is more
preferred in the experiments and classical simulations. However, the iterative version
starts the estimation of the bits from the least significant bit (LSB) toward the most
significant bit (MSB). This impedes the employment of the algorithm as a subroutine
in various multivariate statistical algorithms in which the eigenvalues above or below
some threshold are filtered out. Figure 3 describes the iterative phase estimation algo-
rithm,where the bit values are estimated starting fromMSB (see “Appendix B” section
for the details of the circuit). This iterative version can be used in adaptive processes
to filter out some of the eigenvalues or prepare the ground state of the Hamiltonians.
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5 Conclusion

In this work, we have introduced a quantum circuit for the simulation of the Hamil-
tonian dynamic through the Taylor expansion truncated at the third term. The circuit
can be used with the Hamiltonians given as a sum of unitary matrices. Furthermore,
we have described a method to write the Hamiltonian as a sum of unitary matrices
and generate the equivalent circuit. This allows us to use the circuit with the phase
estimation algorithm to simulate any Hamiltonian.

Acknowledgements We would like to thank two anonymous reviewers for their help in improving the
clarity of the paper and the complexity analysis of the circuit.

Appendix A: explicit steps of the recursion

Second step
(
k = 2

)

First, we plug Eq. (19) in places of A[... ]s:

H = |0〉 〈0| (|0〉 〈0| ⊗ A00 + |1〉 〈1| ⊗ A03 + (|0〉 〈0| ⊗ A01 + |1〉 〈1| ⊗ A02)
(
X ⊗ IN/8

))

+ |1〉 〈1| (|0〉 〈0| ⊗ A30 + |1〉 〈1| ⊗ A33 + (|0〉 〈0| ⊗ A31 + |1〉 〈1| ⊗ A32)
(
X ⊗ IN/8

))

+ |0〉 〈0| (|0〉 〈0| ⊗ A10 + |1〉 〈1| ⊗ A13 + (|0〉 〈0| ⊗ A11 + |1〉 〈1| ⊗ A12)
(
X ⊗ IN/8

)) (
X ⊗ IN/4

) + |1〉 〈1| (|0〉 〈0| ⊗ A20 + |1〉 〈1| ⊗ A23

+ (|0〉 〈0| ⊗ A21 + |1〉 〈1| ⊗ A22)
(
X ⊗ IN/8

)) (
X ⊗ IN/4

)
.

(A1)

This gives the following:

H = |00〉 〈00| ⊗ A00 + |01〉 〈01| ⊗ A03 + (|00〉 〈00| ⊗ A01 + |01〉 〈01| ⊗ A02)
(
I ⊗ X ⊗ IN/8

)

+ |10〉 〈10| ⊗ A30 + |11〉 〈11| ⊗ A33 + (|10〉 〈10| ⊗ A31 + |11〉 〈11| ⊗ A32)
(
I ⊗ X ⊗ IN/8

)

+ (|00〉 〈00| ⊗ A10 + |01〉 〈01| ⊗ A13)
(
X ⊗ I ⊗ IN/8

) + (|00〉 〈00| ⊗ A11

+ |01〉 〈01| ⊗ A12)
(
X ⊗ X ⊗ IN/8

)

+ (|10〉 〈10| ⊗ A20 + |11〉 〈11| ⊗ A23)
(
X ⊗ I ⊗ IN/8

) + (|10〉 〈10| ⊗ A21

+ |11〉 〈11| ⊗ A22)
(
X ⊗ X ⊗ IN/8

)
. (A2)

By rewriting this equation, we obtain in Eq. (21).

Third step
(
k = 3

)

Then, in the third recursion, we get the following:

H = |0| ⊗ A000 + |1| ⊗ A003 + |2| ⊗ A030 + |3| ⊗ A033 + |4| ⊗ A300 + |5| ⊗ A303

+|6| ⊗ A330 + |7| ⊗ A333

+ (|0| ⊗ A001 + |1| ⊗ A002 + |2| ⊗ A031 + |3| ⊗ A032 + |4| ⊗ A301 + |5| ⊗ A302

+ |6| ⊗ A331 + |7| ⊗ A332)
(
I ⊗ I ⊗ X ⊗ IN/8

)
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Fig. 4 Histogram of the probability differences in the outputs of the iterative phase estimation for 5000
random matrices. The algorithm is iterated 20 times for each matrix. Here, the probability to see the
probability difference less than 0.1 is 0.0644 and greater than 0.9 is 0.2862

+ (|0| ⊗ A010 + |1| ⊗ A013 + |2| ⊗ A020 + |3| ⊗ A023 + |4| ⊗ A310 + |5| ⊗ A313

+ |6| ⊗ A320 + |7| ⊗ A323)
(
I ⊗ X ⊗ I ⊗ IN/8

)

+ (|0| ⊗ A011 + |1| ⊗ A012 + |2| ⊗ A021 + |3| ⊗ A022 + |4| ⊗ A311 + |5| ⊗ A312

+|6| ⊗ A321 + |7| ⊗ A322)
(
I ⊗ X ⊗ X ⊗ IN/8

)

+ (|0| ⊗ A100 + |1| ⊗ A103 + |2| ⊗ A030 + |3| ⊗ A033 + |4| ⊗ A200 + |5| ⊗ A203

+ |6| ⊗ A230 + |7| ⊗ A233)
(
X ⊗ I ⊗ I ⊗ IN/8

)

+ (|0| ⊗ A101 + |1| ⊗ A102 + |2| ⊗ A031 + |3| ⊗ A032 + |4| ⊗ A201 + |5| ⊗ A202

+ |6| ⊗ A231 + |7| ⊗ A232)
(
X ⊗ I ⊗ X ⊗ IN/8

)

+ (|0| ⊗ A110 + |1| ⊗ A113 + |2| ⊗ A123 + |3| ⊗ A123 + |4| ⊗ A210 + |5| ⊗ A213

+ |6| ⊗ A220 + |7| ⊗ A223)
(
X ⊗ X ⊗ I ⊗ IN/8

)

+ (|0| ⊗ A111 + |1| ⊗ A112 + |2| ⊗ A121 + |3| ⊗ A122 + |4| ⊗ A211 + |5| ⊗ A212

+|6| ⊗ A221 + |7| ⊗ A222)
(
X ⊗ X ⊗ X ⊗ IN/8

)
, (A3)

where |i | = |i〉 〈i |. This Hamiltonian in matrix form corresponds to the following matrix:

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

(
A000 A001

A002 A003

) (
A010 A011

A012 A013

)

(
A020 A021

A022 A023

) (
A030 A031

A032 A033

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
A100 A101

A102 A103

) (
A110 A111

A112 A113

)

(
A120 A121

A122 A123

) (
A130 A131

A132 A133

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
A200 A201

A202 A203

) (
A210 A211

A212 A213

)

(
A220 A221

A222 A223

) (
A230 A231

A232 A233

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
A300 A301

A302 A303

) (
A310 A311

A312 A323

)

(
A320 A321

A322 A323

) (
A330 A331

A332 A333

)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A4)

123



A generalized circuit for the Hamiltonian... Page 17 of 19   328 

Appendix B: iterative phase estimation for adaptive processes

The circuit in Fig. 3 works as follows:

• Assume that the circuit U = eiHπ and its eigenvector |ϕ〉 are given.
• In the first iteration, k is set to 1. After the controlledU , the following state is obtained

(normalization constants are omitted for simplicity):

|ψ1〉 = |0〉 |ϕ〉 + eiπ(φ1.φ2... )2 |1〉 |ϕ〉 . (B1)

Here, (φ1.φ2 . . . )2 represents the binary form of the phase multiplied by 2: 2φ.
• To make the real part of the value eiπ(φ1.φ2... )2 negative when φ1 = 1 and positive

when φ1 = 0, we apply a rotation Rz (−π/2):

Rz

(
−π

2

)
=

(
1 0
0 e−iπ/2

)

. (B2)

Note that in general when rotation gate about the z-axis is defined, the angle is divided
by 2, which is neglected here. After this gate, we have:

|ψ2〉 = |0〉 |ϕ〉 + eiπ(φ1.φ2... )2−iπ/2 |1〉 |ϕ〉 . (B3)

• After applying the second Hadamard gate, the final state becomes the following:

|ψ3〉 = (1 + cos (α) + i sin (α)) |0〉 |ϕ〉
+ (1 − cos (α) − i sin (α)) |1〉) |ϕ〉 ,

(B4)

where α = π (φ1.φ2 . . . )2 − π/2. The probability difference between |0〉 and |1〉 is
determined by the value of cos(α):

– If φ1 = 0, then α ∈ [−π
2 , π

2

]
and cos(α) ≥ 0. Hence, the probability of |0〉 is

higher than that of |1〉.
– If φ1 = 1, then α ∈ [

π
2 , 3π

2

]
and cos(α) ≤ 0. And so, the probability of |1〉 is

higher than |0〉.
• In the second iteration, k = 2, and if φ1 is 1, then we have (10)2 + (φ2.φ3 . . . )2. Since

ei(10)2π = 1, the phase is in the form (φ2.φ3 . . . )2.

The probability difference between |0〉 and |1〉 in the output may be as high as 1 or in
rare cases is equal to 0. For random 5000 matrices, the distribution of the probability
differences is drawn in Fig. 4: The probability differences are obtained by iterating the
phase estimation algorithm 20 times for eachmatrix. As shown in the figure, the probability
to see the difference less than 0.1 is around 0.06.
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